Trust the Process: The Key Role of Industry 4.0 Technologies in Process Optimization

Manufacturers in every field are always busy looking for ways to improve their business operations and scale up their throughput. it’s an endless challenge.  

In order to achieve this goal, they must examine each step of their current workflow and form dedicated optimization strategies. This is the crucial procedure of process optimization, a never-ending journey that should be reviewed time and again, and in which continuous improvement is measured in micro-steps. The road towards the ultimate goal of improving the company’s bottom line is a long one indeed. 

It comes at no surprise, therefore, that process optimization tops the list of manufacturing executives’ goals and concerns, with 74% stating that they actively explore new ways to improve their operations

Unfortunately, for many of these executives, the desire for optimization has yet to yield real change, with only 42% actively exploring new ways of shortening the supply chain, for instance.

Perhaps that is because process optimization is neither an easy nor clearly defined task, and it has no endpoint.  

Start point

I would define it as the continuous methodical examination of the production processes, and simultaneously, the ongoing alignment of new technologies and work methods employed to improve key parameters that result from them. Technologies and data-based insights play a key role in this, as we will soon see.  

Process optimization begins by closely and honestly observing the manufacturer’s weaker points (such as material waste, bottlenecks, repeating quality issues, missing deadlines, etc.) and asking many hard questions. 

It is only by identifying and analyzing these inefficiencies, and the processes that may cause them, that manufacturers will be able to set specific goals and milestones regarding material utilization and waste, machine availability levels, employee productivity, and dozens of other factors that affect the cost and production rates. 

Real-time data and dedicated technologies play an important role in the efficiency audit process and enable companies to track inefficiencies quickly and accurately by performing an automated root cause analysis when issues arise. By using the right tools, manufacturers will be able to identify recurring errors, unproportional work division between workstations, complex production management procedures, and more.  

I’ve recently explored a few use cases that may help you better understand how specific inefficiencies can be revealed. I’ve looked at bottlenecks, tool misplacements, material waste through inefficient cutting strategies, and more. Click here to read all about it

Upon discovering and listing vulnerabilities, manufacturers can set sub-goals that address their ability to boost production or cut costs on a weekly or even daily basis, thereby breaking the overwhelming concept of production optimization into actionable steps. Industry benchmarks and real-life use cases may come in handy for setting goals. For example, we’ve recently released a specific use case that shows how optimization managed to improve profitability by 4%. 

(After new optimization strategies are implemented, results are once again collected and analyzed for further optimization). 

Overall, the methodology of process optimization can be broken down into these steps::

  • Spotting and listing inefficiencies 
  • Analyzing and prioritizing areas for improvement 
  • Forming a detailed strategy of the optimization process 
  • Implementing said strategy
  • Gathering and analyzing results 
  • Spotting and listing inefficiencies

 

 

Technology plays a key role in most of these stages. 

As we’ve mentioned, adopting the right technology is crucial to the success of this mission. 

The following paragraphs look at ways that industry 4.0 tools  help manufacturing executives turn process optimization into a practical reality for daily business. 


Along came technology – The role of current technologies in process optimization

When discussing the digital revolution in manufacturing (or any other field, for that matter), we often make the mistake of assuming that its greatest achievement is in replacing manual work with automated procedures. The fact of the matter is, the best thing about digitization and technology, in general, isn’t the elimination of repetitive manual labor and the creation of faster machines (although it is a nice advantage, I must admit); for me, it is in many ways about the ability to meticulously structure a process and continuously study and optimize it. 

Revealing our manufacturing blind spots and inefficiencies is the main event, if you ask me.

Industry 4.0 technologies, and specifically, manufacturing optimization solutions, enable us to study each part of the manufacturing process in detail and to base our steps on actual facts: We can detect the exact points in time at which productivity drops; analyze all performance parameters to understand the cause for inefficiency; and finally, implement the right work methods and solutions to solve issues.

Here are some concrete examples for the role of technology in setting new standards for manufacturing processes: 

 

  •     Digital visualization and simulation: You must have heard the term digital twin. Creating a digital twin of the manufacturing production line can help uncover anomalies and test different solutions in a risk-free environment. This technology mimics the behavior of the real problems and solutions we are interested in examining. In the context of process optimization, think of how production processes that include running simulations ahead can be more efficient. Transparency is a must for identifying process inefficiencies, but being able to ‘see’ the entire production floor is impossible unless you have a model of sorts. 
  •     Real-time data: Once again, we are able to study current and potential behaviors using immediate data and witness the positive (or negative) influences of each change to the process in real time. Should anything out of the ordinary happen, we will be alerted immediately instead of discovering costly moves only after the effect. Improving processes by acting upon real-time data can lead to optimized quality, minimization of unnecessary costs, and other benefits. 
  •     Automated root-cause analysis of quality issues: In addition to real-time alerts, implementing advanced optimization solutions improves our post-event analysis capabilities and help us not only reach conclusions much faster and with greater accuracy, but also identify the faults in the processes that have led to issues in the first place, and finetune processes as well. For instance: When a throughput challenge isn’t met, and deadlines are pushed, we can use technology to identify specific processes that can be better managed – such as the time that it takes to move specific tools or parts during the production, specific workstations that lag behind, and more.  
  •    Predictive insights: AI-based solutions allow manufacturers to simulate steps in the processes based on data that was already gathered and reflects the routine, based on calculations that take into account countless factors in and outside the factory. Predictive insights are crucial in deciding which processes are more critical to the goals and specific challenges, and should therefore be prioritized. If you want to improve things, first estimate your progress with leaving things as is…

There are many different procedures that have long been known to be inefficient, but so far we have been lacking the appropriate technology solutions needed for improving them. In the age of industry 4.0, we are witnessing change thanks to AI and IIoT tools that turn big data into a big difference.

If earlier I’ve listed abilities that technology adds to the blend, now I wish to name a few important outcomes of technologies that support process optimization and are game changes for most discrete manufacturing enterprises I know:

  •     Predictive quality assurance: Instead of discovering quality issues when it is already too late and delays have already occurred, money was lost and so on, AI-based IIoT solutions (I call them manufacturing optimization software) enable manufacturers to predict and alert the production managers on potential problems, for instance one that has to do with materials expiration. A good enough solution will also provide smart insights on what to do next. An optimized production cycle takes these issues into account and forms a workflow that avoids them from the get-go. Optimizing work processes based on technology means identifying where processes aren’t meticulous enough and may result in quality faults, and optimizing them by adding the right technology to the blend.

    Read more on the Tremendous Power Of AI In Manufacturing Optimization and explore 5 Examples That Clear The Mist
  •     Prediction of late work orders: An optimized manufacturing process also includes dealing with setbacks and communicating them to employees and customers. By noticing, for instance, that a specific workstation is likely to miss a certain deadline (based on former performance parameters), managers are able to reassign the work, or (when impossible) alert customers and allow them to adjust accordingly. This creates a more responsible and responsive environment and prevents conflicts and frustration.
  • Predicting and preventing bottlenecks: Once again, by getting an instant, data-based overview of the entire production line, manufacturers are able to identify potential bottlenecks or receive immediate alerts as they start. This gives the manufacturer time to readjust and, in case these issues repeat themselves, implement preventive solutions accordingly.

Summary

Process optimization is far from being a new concept. From the beginning of manufacturing history, we’ve seen workers and managers try to make the most with what they have by changing the way they work, and by defining organized processes. 

Only they had far lesser tools and were able to reach results that pale in comparison to today’s advancements.

The true revolutionary force of technology makes us smarter and more informed than ever, and enables us to face our errors and correct them in time. In the AI era, where data fuels optimization, the sooner we adopt and implement these tools, the stronger our manufacturing capabilities will become.

About Plataine

This content is brought to you by Plataine, the leading provider of Industrial IoT and AI-based manufacturing optimization software. Learn more about how Plataine is transforming discrete manufacturing and boosting productivity in factories like yours.

Amir Ben-Assa is responsible for global marketing and business development at Plataine. Over the past 20 years Mr. Ben-Assa directed marketing departments and the development and successful deployment of innovative technologies and solutions for the industrial sector. Prior to joining Plataine, he held various marketing and business development roles at RFKeeper, AeroScout (acquired by Stanley), and Tecnomatix (acquired by Siemens). Amir holds a B.Sc. in Mechanical Engineering from the Technion, Israel Institute of Technology and is a graduate of the Executive MBA program at Tel-Aviv University.

Most viewed: